CS log
Intro to ML: Language Processing 본문
I used BigQuery for data processing and exploratory data analysis and the Vertex AI platform to train and deploy a custom TensorFlow Regressor model to predict customer lifetime value.
Vertex AI is Google Cloud's next generation, unified platform for machine learning development and the successor to AI Platform ➡️ you can leverage the latest ML pre-built components and AutoML
실제 클라우드 서비스에서 hands-on lab을 해보았다.
project명과 아이디 등 민감한 정보가 많아 캡쳐본을 올리지는 못하지만, cloud service를 activate, authorize 해주고 (task1),
Create Vertex AI custom service account for Vertex Tensorboard integration 해준다.
Recency: how recently have customers purchased?
Frequency: how often are customers purchasing?¶
Monetary: how much are customers spending?¶
ax = baseline.plot(kind='scatter',
x='predicted_monetary_value_3M',
y='target_monetary_value_3M',
title='Actual vs. Predicted customer 3-month monetary value',
figsize=(5,5),
grid=True)
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
# now plot both limits against eachother
ax.plot(lims, lims, 'k-', alpha=0.5, zorder=0)
ax.set_aspect('equal')
ax.set_xlim(lims)
ax.set_ylim(lims);
'AI > NLP' 카테고리의 다른 글
Cloud Natural Language API: Qwik Start (0) | 2024.09.23 |
---|---|
Speech-to-text API (0) | 2024.09.23 |
GPT-1 (1) | 2024.09.18 |
seq2seq learning with neural networks (0) | 2024.09.12 |
GAN 논문 리뷰 (0) | 2024.08.30 |